
Argonne Leadership Computing Facility1

Best Practices for Queueing
and Running Jobs on Theta

Argonne Leadership Computing Facility1

Adrian Pope
Christopher Knight
Misha Salim

Argonne Leadership Computing Facility2

Outline
https://www.alcf.anl.gov/user-guides
• Scheduling Policies & Cobalt

• Job Priorities
• Cobalt attributes

• Tips for Short & Interactive Jobs
• General tips for submitting jobs
• How to find idle nodes
• Interactive jobs

• Workflows and Ensembles
• Tips for simple ensembles
• Balsam

Argonne Leadership Computing Facility3

Section I: Scheduling Policies
& Cobalt

Argonne Leadership Computing Facility3

Argonne Leadership Computing Facility4

Theta System Overview

thetaloginM thetamomN nid0XXXX

bash

Users SSH to Theta Login Nodes

ssh

Argonne Leadership Computing Facility5

Theta System Overview

thetaloginM thetamomN nid0XXXX

qsubbash

Submit Jobs to Cobalt via qsub

Argonne Leadership Computing Facility6

Theta System Overview

thetamomN nid0XXXX

Cobalt allocates compute nodes and launches the submitted script

allocated nodes

bash
#!/bin/bash

echo "Starting job script”

aprun -n 128 myprogram.exe

Argonne Leadership Computing Facility7

Theta System Overview

thetamomN nid0XXXX

aprun on MOM node launches application onto compute nodes

allocated nodes

bash
#!/bin/bash

echo "Starting job script”

aprun -n 128 myprogram.exe

ap
ru
n

Argonne Leadership Computing Facility8

Submitting and Running Jobs on Theta
https://www.alcf.anl.gov/support-center/theta/submit-job-theta
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts
• Cobalt (ALCF)

• Manages job queue, decides what job will run on which nodes when
• User writes a job script, submits script to queue, script eventually runs on thetamom node
• Commands: qsub, qstat, qdel, qalter, qhold, qrls

https://www.alcf.anl.gov/support-center/theta/theta-memory-modes
https://www.alcf.anl.gov/support-center/theta/affinity-theta
• ALPS (Cray)

• aprun in job script runs on thetamom, launches executable onto compute nodes
• MPI details, processor affinity, etc.

https://www.alcf.anl.gov/support-center/theta/submit-job-theta
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts
https://www.alcf.anl.gov/support-center/theta/theta-memory-modes
https://www.alcf.anl.gov/support-center/theta/affinity-theta

Argonne Leadership Computing Facility9

Theta - Submitting Script Jobs

• Executable is invoked within script (bash, csh, …)

• aprun is used to launch executables on compute nodes
> cat myscript.sh

#!bin/sh
#COBALT –A <project_name> –t 10 –n 16 –O <prefix_name> –q default
#COBALT --attrs mcdram=cache:numa=quad
echo “Starting Cobalt job script”
aprun –n 1024 –N 64 –d 1 –j 1 --cc depth <app> <app_args>

> qsub myscript.sh
123456

MPI Ranks Ranks per node Affinity Memory Mode

Argonne Leadership Computing Facility10

Cobalt: notable qsub attributes
https://www.alcf.anl.gov/support-center/theta/submit-job-theta
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

• Specify memory mode: --attrs mcdram=<mcdram_mode>:numa=<numa_mode>
• Default is cache/quad: --attrs mcdram=cache:numa=quad

• Submit to specific nodes: --attrs location=<list_of_nodes>

• Enable access to SSDs: --attrs ssds=required:ssd_size=<size_in_GB>
• Current maximum is 128 GB: --attrs ssds=required:ssd_size=128

• Enable SSH access to nodes: --attrs enable_ssh=1
• Retrieve compute node ids from $COBALT_PARTNAME
• Prepend node id with ‘nid’ and zeroes to span 5-digits
• SSH to compute node from MOM node: ssh nid00001

https://www.alcf.anl.gov/support-center/theta/submit-job-theta
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

Argonne Leadership Computing Facility11

Theta - Now That Your Job Is Queued
https://www.alcf.anl.gov/support-center/theta/submit-job-theta

• Check status of submitted jobs with qstat

• Format of output can be customized with --header
> qstat --header JobID:User:WallTime:Nodes:State:Queue

JobID User WallTime Nodes State Queue
==
123456 user1 24:00:00 4000 running default
123457 user2 03:00:00 2048 queued default
123458 user3 03:00:00 128 running default
123459 user1 00:30:00 1 running debug-cache-quad
123460 user4 00:30:00 64 queued training

https://www.alcf.anl.gov/support-center/theta/submit-job-theta

Argonne Leadership Computing Facility12

Theta - Checking Status of Job
https://www.alcf.anl.gov/support-center/theta/gronkulator-job-status-display
https://status.alcf.anl.gov/theta/activity

Running
Starting
Queued
Reservations

https://www.alcf.anl.gov/support-center/theta/gronkulator-job-status-display
https://status.alcf.anl.gov/theta/activity

Argonne Leadership Computing Facility13

Theta’s Queues
https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta

• debug-cache-quad: 16 nodes, max size 8, max length 1 hr, max queued 1 job
• debug-flat-quad: 16 nodes, max size 8, max length 1 hr, max queued 1 job
• default: production jobs (see next slide)
• backfill: unexpired projects that have exhausted their allocation can still submit jobs

• Usually has access to same nodes as default
• Always lower priority than default jobs
• Will run when there are scheduling windows that no default job can use
• Shorter jobs have a better chance of running sooner

https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta

Argonne Leadership Computing Facility14

Default (Production) Queue
https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta

• Maximum 20 jobs queued per user
• Maximum 10 jobs running per user
• Minimum wall clock 30 minutes (0:30:00 hours)
• Maximum wall clock

• node count >= 128 nodes (minimum allocation): maximum 3:00:00 hours
• node count >= 256 nodes : maximum 6:00:00 hours
• node count >= 384 nodes : maximum 9:00:00 hours
• node count >= 640 nodes : maximum 12:00:00 hours
• node count >= 802 nodes : maximum 24:00:00 hours

https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta

Argonne Leadership Computing Facility15

Cobalt: Scheduler and Resource Manager
• Queue: After a job is submitted, it enters a queue of jobs waiting to use the system
• Cobalt: Manages the queue and determines which jobs will run on which nodes and when
• Score: Jobs are ordered in the queue by the score they have accrued, greatest to least
• Wait Time: Can be roughly divided into 2 factors

• Rate that a job accrues score according to the score function (see next slide)
• Score required for a job of a particular size/length to run in current queue conditions

• Large jobs usually need to get near the top of the queue to run
• Small/Short jobs can sometimes find windows to run in between larger/longer jobs and do

not always need to get to the top of the queue
• Deeper queues generally result in larger scores being accrued before jobs run

Argonne Leadership Computing Facility16

Cobalt: Score Function
• Initial Score: same value for all jobs in default queue (currently 51.0)
• Functional Form: scores for all jobs have the same functional dependence on time

• Super-linear in time, dS/dt starts very small and increases
• Jobs initially gain score very slowly, but will “build up steam” later

• Coefficient in front of time function depends on job parameters
• Jobs with larger coefficients will start at same initial value but rise faster and pass other jobs
• Project type: INCITE/ALCC accrue score more quickly than DD
• Number of nodes: Larger jobs accrue score more quickly

• Encourages leadership computing
• Wall clock: Shorter jobs accrue score more quickly

• Encourages users to accurately estimate job times, which helps scheduling efficiency
• Holds: Score and dS/dt are frozen when jobs are on hold (user_hold, dep_hold, admin_hold)

• Score and dS/dt are functions of EligibleWaitTime = QueuedTime - HoldTime
• Tools show QueuedTime, scores can look confusing for jobs that have been on hold

Argonne Leadership Computing Facility17

Deep Queues
• Depth: Theta’s queue has been historically deep by ALCF standards since ~May 2020

• Typically ~5-10x deeper than in 2019
• Estimate how long jobs are waiting as a function of size/length from queued jobs

• qstat or status webpage for current queue, sbank to look up job histories
• Project type - Adrian estimates that a DD job waits ~2x as long as equivalent INCITE/ALCC

• Optimizing overall project throughput is subject to particular constraints of project
• Large jobs accrue score more quickly, and use many core-hrs per job
• Small jobs might have lower latency when they can find windows, but shorter wall clock

available and fewer core-hrs per job
• The middle-ground and cross-overs are not always clear

• Job Organization Tools: ensembles, dependencies, workflows (see following slides)
• Help/Advice

• INCITE/ADSP projects have catalysts, ALCC and DD projects may have an ALCF contact
• Email support@alcf.anl.gov if you get stuck

mailto:support@alcf.anl.gov

Argonne Leadership Computing Facility18

Ensembles: Overview
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

• Efficiency: pack jobs together and wait in the queue once
• Simple cases can be handled directly in an “ensemble” cobalt script

• Serial
• Situation: a number of jobs that are similar in size that are short compared to wall clock limit
• Solution: run a sequence of aprun in the same script

• Parallel
• Situation: a number of independent jobs that are similar in length
• Solution: run multiple aprun at the same time
• Benefit: bundling small jobs together into a larger job can access longer wall clock limits

• Complexity
• Can mix strategies in a single cobalt script
• Workflow might be better for complicated mixes of sizes/lengths and dependencies

https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

Argonne Leadership Computing Facility19

Ensembles: Serial
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

• Straightforward shell script
• Later aprun can depend on output of previous

#!/bin/bash
echo "Starting Cobalt job script”
aprun -n 128 -N 64 myprogram.exe arg1
aprun -n 128 -N 64 myprogram.exe arg2
aprun -n 128 -N 64 myprogram.exe arg3

https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

Argonne Leadership Computing Facility20

Ensembles: Parallel
https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

• Background each aprun so that script can start more apruns before first returns
• “sleep 1” between aprun to allow resource manager to keep track of node use
• ”wait” at end for all backgrounded aprun to finish before exiting script
• Limitations: no more than 1000 aprun at a time; if you need more, use a workflow

#!/bin/bash
echo "Starting Cobalt job script”
aprun -n 192 -N 64 myprogram.exe arg1 & #background
sleep 1 #give launch ctrl a second
aprun -n 256 -N 64 myprogram.exe arg1 &
sleep 1
aprun -n 64 -N 64 myprogram.exe arg1 &
wait #wait to finish before exit

https://www.alcf.anl.gov/support-center/theta/running-jobs-and-submission-scripts

Argonne Leadership Computing Facility21

Dependencies: Overview
https://www.alcf.anl.gov/support-center/theta/submit-job-theta

• Run a sequence of jobs in a particular order
• Example: a single long simulation that requires more wall clock than allowed for an individual

job, and the code employs a checkpoint/restart mechanism
• Dependencies: Cobalt supports “dependencies” between jobs

• Next job will only start when job on which it depends has finished
• Guarantees order of jobs, and that only 1 job will run at a time
• A job in a dependency chain will inherit some fraction of the score that the previous job

accrued by the time it ran, decreasing the queue wait time in between jobs after first job
• Details: Knowing some details can help with user experience

https://www.alcf.anl.gov/support-center/theta/submit-job-theta

Argonne Leadership Computing Facility22

Dependencies: Details
• Step-by-Step

• Job 1 is submitted and begins accruing score, the job state is queued
• Job 2 is submitted with a dependency on the Job 1 and is put in dep_hold state

• A job in dep_hold state does not accrue score or accumulate eligible wait time
• Job 1 accrues enough score to run
• When Job 1 finishes, Job 2 is released from dep_hold and inherits a fraction of the score that

Job 1 had accrued when it launched (default is usually 50%)
• Job 2, now in a queued state, starts accumulating eligible wait time and accrues score

• What can go wrong?
• If Job 1 returns a non-zero exit code, Job 2 will go into a dep_fail state
• The user can release Job 2 from dep_fail into a queued state, but the score transfer is lost

qrls --dependencies <jobid>

Argonne Leadership Computing Facility23

Dependencies: nofail
Theta: /home/rloy/public/scripts/nofail

• If a job runs out of wall clock and is interrupted by the scheduler, the return code is non-zero,
the chain will be interrupted, and score will not be inherited

• If your code has a checkpoint/restart mechanism, you may not care if the first job was
interrupted by running out of time since you can restart from last checkpoint

• Cobalt scripts are shell scripts, so you can trap signals and return zero anyway

• “nofail” script is an example of how to do this

cp /home/rloy/public/scripts/nofail .
qsub -t 5 -n 64 --mode script nofail <your_script> arg1 arg2 ...

• Not an officially supported product, but has been used successfully

• Any #COBALT lines from <your_script> are not visible to cobalt
• Put values in command line flags, or edit your copy of nofail to include your #COBALT lines

Argonne Leadership Computing Facility24

Special Cases
https://www.alcf.anl.gov/support-center/theta/machine-reservations-theta

• Occasionally projects have needs that fall outside of the normal queueing policies
• Form: We ask those projects to fill out the form linked above to give us the necessary

information to consider their request and determine whether to take any action, and we may
need up to 5 business days to decide what we will do

• Potential actions:
• Score boosts: Scores for a few jobs can be boosted to help meet deadlines for conferences,

proposals, journal submissions, and similar.
• Reservations: A set of nodes can be reserved in advance for a particular time. Typically

requires stronger justification than score boosts because it is more disruptive to scheduling.
• Special queues: If a project will regularly need to run outside normal queue limits, it is

sometimes possible to set up a limited-access queue with properties that differ from default.
This is rarely used and requires extremely strong justification and approval at a high level in
ALCF management.

https://www.alcf.anl.gov/support-center/theta/machine-reservations-theta

Argonne Leadership Computing Facility25

Maximum Job Size
• Theta nominally has 4360 nodes available for the default queue
• Rarely a node will not show up after maintenance

• nodelist | grep default | wc -l
• Nodes that are “down” are also not available for jobs

• nodelist | grep default | grep down | wc -l
• Reservations may make some default nodes unavailable to other jobs

• Use the status webpage reservations tab or showres
• Turn the node ranges into a count with a command line utility on Theta:
/soft/cobalt/tools/expand-nodes.py 3356-3823,3840-4371 | wc –w

• COVID-19 research currently has a standing reservation of 260 nodes, in which case the
baseline for maximum job size is 4100 nodes

• Cobalt allows users to queue jobs up to 4360 nodes to default even if some nodes are down or
there is a very long reservation, so very large jobs can appear to get stuck at the top of the
queue if not enough resources are available

Argonne Leadership Computing Facility26

Other Policies Relevant to Project Planning
https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta

• Overburn (INCITE/ALCC)
• Projects can use up to 125% of the allocation for capability-scale jobs (802+ nodes)

• Sub-capability jobs will go to backfill when a project reaches 100%
• All jobs will go to backfill when a project reaches 125%

• Available for the first 11 months of an allocation year
• INCITE: Jan 1 – Nov 30
• ALCC: July 1 – May 31

https://www.alcf.anl.gov/support-center/theta/job-scheduling-policy-theta

Argonne Leadership Computing Facility27

ANY QUESTIONS?

Argonne Leadership Computing Facility27

Argonne Leadership Computing Facility28

Section II: Tips for Short and
Interactive Jobs

Argonne Leadership Computing Facility28

Argonne Leadership Computing Facility29

Preparing to Submit Job
https://www.alcf.anl.gov/user-guides/allocation-accounting-sbank
• Check available disk space

• $HOME directory: myquota
• Project directories: myprojectquotas
• Project directories should be used for production work

• Check that your project has core-hours available
• Use sbank command to query allocation details
• Allocation available to project: sbank l a –p <project_name>
• Charges against project by user: sbank l u –p <project_name> –u <user>
• Charges on Theta are based on number of nodes

• Jobs smaller than 128 nodes are allocated 128 nodes

Argonne Leadership Computing Facility30

Why Hasn’t My Job Started?

• There is a reservation which delays your job from starting
• List all reservations currently in place: showres

• Job on Theta is in ”starting” state; nodes being rebooted into memory mode requested.

• There are no available nodes for the requested queue
• Nodes may be down, busy running other jobs, draining next job, or reserved
• Check queue status: qstat
• Check machine status: http://status.alcf.anl.gov
• Check “ALCF Weekly Updates” for training, reservation, and maintenance notices

• List status of nodes on Theta: nodelist

Argonne Leadership Computing Facility31

When will my job start?
https://www.alcf.anl.gov/
• The question every user asks after submitting a job
• Difficult question to answer: depends on dynamic state of queue
• Output of qstat can offer one estimate

• based on total machine hours queued/running ahead of job

Example of alias
to add to user
.bashrc file

Argonne Leadership Computing Facility32

Tips for submitting short test jobs
https://www.alcf.anl.gov/
• Short walltime jobs are sometimes needed

• Debugging issue in code/script
• Run multiple tests without having to resubmit job
• Test result of optimizations and profiling
• Testing new capability

• Debug queues available for small runs (1-8 nodes)

• What about jobs larger than 8 nodes?
• Need to submit within default queue
• Jobs smaller than 128 nodes are allocated 128 nodes

• Opportunity to sneak in short-large jobs ahead of maintenance windows
• Pay attention to ALCF weekly updates for Maintenance Mondays and other reservations

Argonne Leadership Computing Facility33

Improving turnaround in debug queues
https://www.alcf.anl.gov/
• Two 16-node debug queues available: debug-cache-quad & debug-flat-quad

• Choose whichever queue has nodes readily available!

• Flat mode
• Default memory allocations to DDR (192 GB)
• If need <16 GB, then use numactl to allocate HBM for performance

• Example: aprun –n 128 –N 64 –d 1 –j 1 --cc depth numactl –m 1 <app> <app_args>

• Can job fit within debug queue limits?
• Maximum of 256 MPI ranks per node (if fit within memory)
• Increase number of ranks per node to decrease number of nodes requested

Argonne Leadership Computing Facility34

Checking availability of nodes
https://status.alcf.anl.gov/theta/activity

Running
Starting
Queued
Reservations

Idle nodes

Argonne Leadership Computing Facility35

Tools: nodelist
https://www.alcf.anl.gov/support-center/theta/submit-job-theta
• nodelist

• List resources on system
• Helpful to discover “backfill” nodes to run jobs on

Argonne Leadership Computing Facility36

Tools: nodelist
https://www.alcf.anl.gov/support-center/theta/submit-job-theta

• Desire for quick turnaround on short debugging jobs
• Find batch of idle nodes that could be backfilled

• Ignore nodes assigned to active reservation (e.g. CVD_Research)

Argonne Leadership Computing Facility37

Interactive Jobs
https://www.alcf.anl.gov/support-center/theta/submit-job-theta
• Desire to interactively work on compute nodes
• qsub options

• Interactive job: –I or --interactive
• E-mail notifications: –M <email_address1>:<email_address2>

• Need to wait for nodes allocated and job to start
• Important to remember shell is executed on launch node, not compute node

• aprun needed to launch commands on compute nodes

Argonne Leadership Computing Facility38

Interactive Jobs
https://www.alcf.anl.gov/support-center/theta/submit-job-theta
• Desire to interactively work on compute nodes
• qsub options

• Interactive job: –I or --interactive
• E-mail notifications: –M <email_address1>:<email_address2>

• Need to wait for nodes allocated and job to start
• Important to remember shell is executed on launch node, not compute node

• aprun needed to launch commands on compute nodes

Argonne Leadership Computing Facility39

Interactive Jobs: Environment
https://www.alcf.anl.gov/

• Environment on MOM node may need to be refreshed in some cases
• Dynamic linking

• `ldd <exe>` results in “… error while loading shared libraries …”

• Manually update needed environment variables
• export LD_LIBRARY_PATH=<value from login node>

• Alternatively, can reload environment using module
• Login node: module save my_defaults
• Creates ~/.module_snapshots/my_defaults file

• Mom node: module restore my_defaults

Argonne Leadership Computing Facility40

Interactive Jobs: Jupyter Hub
https://www.alcf.anl.gov/support-center/theta/jupyter-hub

• Work within Python and R notebooks or open terminal in browser
• Login (using ALCF credentials): https://jupyter.alcf.anl.gov/theta/hub/login
• Open new terminal

Running earlier ’nodelist’ command

Argonne Leadership Computing Facility41

ANY QUESTIONS?

Argonne Leadership Computing Facility41

Argonne Leadership Computing Facility42

Section III: Ensembles

Argonne Leadership Computing Facility42

Argonne Leadership Computing Facility

Theta Ensemble Jobs

#!/bin/bash

myApp="/path/to/app --input="

nid00004

nid00005

nid00001

nid00002

nid00003

Compute (KNL)
Nodes

Job scripts run on MOM
(Broadwell) nodes

Argonne Leadership Computing Facility

#!/bin/bash

myApp="/path/to/app --input="

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

nid00004

nid00005

nid00001

nid00002

nid00003

Theta Ensemble Jobs Compute (KNL)
Nodes

Job scripts run on MOM
(Broadwell) nodes

aprun

Argonne Leadership Computing Facility

#!/bin/bash

myApp="/path/to/app --input="

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

aprun -n 128 -N 64 $myApp input2 >& run2.out &
sleep 1 nid00004

nid00005

nid00001

nid00002

nid00003

Theta Ensemble Jobs Compute (KNL)
Nodes

Job scripts run on MOM
(Broadwell) nodes

aprun

aprun

Argonne Leadership Computing Facility

#!/bin/bash

myApp="/path/to/app --input="

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

aprun -n 128 -N 64 $myApp input2 >& run2.out &
sleep 1

aprun -n 128 -N 64 $myApp input3 >& run3.out &

nid00004

nid00005

nid00001

aprun

aprun

nid00002

nid00003

aprun

Theta Ensemble Jobs Compute (KNL)
Nodes

Job scripts run on MOM
(Broadwell) nodes

alcf.anl.gov/user-guides/running-jobs-xc40#bundling-multiple-runs-into-a-script-job

https://www.alcf.anl.gov/user-guides/running-jobs-xc40

Argonne Leadership Computing Facility

#!/bin/bash

myApp="/path/to/app --input="

aprun -n 64 -N 64 $myApp input1 >& run1.out &
sleep 1

aprun -n 128 -N 64 $myApp input2 >& run2.out &
sleep 1

aprun -n 128 -N 64 $myApp input3 >& run3.out &

aprun -n 128 -N 64 $myApp input3 >& run3.out &

nid00004

nid00005

nid00001

aprun

aprun

nid00002

nid00003

aprun

Theta Ensemble Jobs Compute (KNL)
Nodes

Job scripts run on MOM
(Broadwell) nodes

alcf.anl.gov/user-guides/running-jobs-xc40#bundling-multiple-runs-into-a-script-job

Efficiently packing jobs across nodes and time requires a
workflow manager

https://www.alcf.anl.gov/user-guides/running-jobs-xc40

Argonne Leadership Computing Facility

Balsam
Automated scheduling and execution for HPC workflows

• Submit unlimited application runs to a private task database

• Service component automates queue submission

• Launcher component pulls tasks for load-balanced execution
• Resilient to task-level faults
• Automatic retry or custom handling of timed-out, failed jobs
• Runs unmodified user applications or Singularity containers

• Workflow status and project statistics available at-a-glance

Argonne Leadership Computing Facility
balsam.readthedocs.io

Balsam in production @ ALCF

http://balsam.readthedocs.io

Argonne Leadership Computing Facility

Theta Module

$ module load balsam

Sets PATH to include:
PostgreSQL 9.6 binaries

Python 3.6 environment bin/ (with Balsam installed)

Argonne Leadership Computing Facility

Command line interface

$ balsam

usage: balsam [-h]
{app,job,dep,ls,modify,rm,killjob,mkchild,launcher,submit-launch,init,service,make_dummies,which,log,server}

Balsam 0.3.5

Command line interface:

app add a new application definition
job add a new Balsam job
dep add a dependency between two existing jobs
ls list jobs, applications, or jobs-by-workflow

Argonne Leadership Computing Facility

Start a new Balsam DB

Use balsam init to create a new database directory

balsam init ~/myproject

Successfully created Balsam DB at: /home/user/myProject
Use `source balsamactivate myProject` to begin working.

Argonne Leadership Computing Facility

Start a new Balsam DB

source balsamactivate <db-name>
starts server (if not running), sets environment

$. balsamactivate myProject
Launching Balsam DB server
waiting for server to start.... done
server started
[BalsamDB: myProject] $

Argonne Leadership Computing Facility

Balsam Hello World
balsam app :

Register new applications with Balsam

[BalsamDB: myProject] $ balsam app --name say-hello \
--executable "echo Hello, "

Application 1:

name: say-hello
description:
executable: echo Hello,

Added app to database

Argonne Leadership Computing Facility

Balsam Hello World
balsam job :
Add a new task

[BalsamDB: myProject] $ balsam job --name test1 --workflow test \
--app say-hello --args "World 1!"

[BalsamDB: myProject] $ for i in {2..10}
> do
> balsam job --name test$i --workflow test \
--app say-hello --args "World $i!" --yes

> done

Argonne Leadership Computing Facility

BalsamJob 0796bd50-adbc-424b-bd26-476f2c00275b

--

workflow: test

name: test1

description:

parents: []

input_files: *

num_nodes: 1

ranks_per_node: 1

environ_vars:

application: say-hello
args: World 1!
auto_timeout_retry: True

*** Executed command: echo Hello, World 1!

*** Working directory: ~/myProject/data/test/test1_0796bd50

Confirm adding job to DB [y/n]: y

Confirmation shows task
details and adjustable

fields

Argonne Leadership Computing Facility

Balsam Hello World
balsam ls :

View tasks in database

[BalsamDB: myProject] $ balsam ls

job_id | name | workflow | application | state
--
0796bd50-adbc-424b-bd26-476f2c00275b | test1 | test | say-hello | CREATED
421e6df8-4984-423f-b44f-c58c6e2e8307 | test2 | test | say-hello | CREATED
d62b194a-e20b-4111-a407-3669fb4c89e6 | test3 | test | say-hello | CREATED
e73325df-3104-4e7f-aa1e-9ba61840ecc6 | test4 | test | say-hello | CREATED
79becbd6-8ab9-4012-9828-6dc98157eb5c | test5 | test | say-hello | CREATED
c7ed41fd-6aa4-4a29-957e-bf91cfef3453 | test6 | test | say-hello | CREATED
dda7cdd3-0098-4fe7-9827-ca78a73d7be9 | test7 | test | say-hello | CREATED
2e6c4914-a1a7-4ea1-be5e-994fc6ca7830 | test8 | test | say-hello | CREATED
4a12cb47-cbe1-4f83-97d2-ee97eefc9343 | test9 | test | say-hello | CREATED
f4d77a25-1d48-4fc9-be2b-cc0e1af61473 | test10 | test | say-hello | CREATED

Argonne Leadership Computing Facility

Balsam Hello World
balsam submit-launch :

Shortcut for Cobalt job submission (template in ~/.balsam)

[BalsamDB: myProject] $ balsam submit-launch -n 2 -t 5 \
-q debug-cache-quad -A datascience --job-mode mpi

Submit OK: Qlaunch {
'command': '~/myProject/qsubmit/qlaunch1.sh',
'id': 1,
'job_mode': 'mpi',
'nodes': 2,
'project': 'datascience',
'queue': 'debug-cache-quad',
'scheduler_id': 333718,
'state': 'submitted',
'wall_minutes': 5,
'wf_filter': ''}

Customizable
templated script

Argonne Leadership Computing Facility

Balsam Hello World
If successful, jobs eventually marked

JOB_FINISHED

[BalsamDB: myProject] $ balsam ls

job_id | name | workflow | application | state

dda7cdd3-0098-4fe7-9827-ca78a73d7be9 | test7 | test | say-hello | JOB_FINISHED
f4d77a25-1d48-4fc9-be2b-cc0e1af61473 | test10 | test | say-hello | JOB_FINISHED
79becbd6-8ab9-4012-9828-6dc98157eb5c | test5 | test | say-hello | JOB_FINISHED
c7ed41fd-6aa4-4a29-957e-bf91cfef3453 | test6 | test | say-hello | JOB_FINISHED
e73325df-3104-4e7f-aa1e-9ba61840ecc6 | test4 | test | say-hello | JOB_FINISHED
4a12cb47-cbe1-4f83-97d2-ee97eefc9343 | test9 | test | say-hello | JOB_FINISHED
421e6df8-4984-423f-b44f-c58c6e2e8307 | test2 | test | say-hello | JOB_FINISHED
2e6c4914-a1a7-4ea1-be5e-994fc6ca7830 | test8 | test | say-hello | JOB_FINISHED
0796bd50-adbc-424b-bd26-476f2c00275b | test1 | test | say-hello | JOB_FINISHED
d62b194a-e20b-4111-a407-3669fb4c89e6 | test3 | test | say-hello | JOB_FINISHED

Argonne Leadership Computing Facility

Balsam Hello World

Job working directories are created as:
data/<workflow>/<name>_<id>

[BalsamDB: myProject] $ ~/myProject/data/test> ls

test1_0796bd50 test2_421e6df8 test4_e73325df test6_c7ed41fd test8_2e6c4914
test10_f4d77a25 test3_d62b194a test5_79becbd6 test7_dda7cdd3 test9_4a12cb47

Argonne Leadership Computing Facility61

ANY QUESTIONS?

Argonne Leadership Computing Facility61

Argonne Leadership Computing Facility62

When Things Go Wrong Running…
https://www.alcf.anl.gov/user-support

• Examine core files

• Best to save all three files generated by cobalt

• <prefix_name>.cobaltlog, <prefix_name>.error, and <prefix_name>.output

• Retain important information

• Jobid, machine name, copy/location of all files, exact error message

• Contact us

• Your ALCF contact

• Email: support@alcf.anl.gov

mailto:support@alcf.anl.gov

Argonne Leadership Computing Facility63

HAPPY COMPUTING!

Argonne Leadership Computing Facility63

